Восстановление пароля
Логин:   Пароль:  
Ещё в разделе
Объявления



Опрос

Самое страшное оружие ?

пистолет
нож
автомат
химическое
бомба
ядерное


Результаты
Все опросы

Партнеры

Физики обошли стандартный квантовый предел


Дата: 02.08.2013 15:35
Исследователи смогли повысить чувствительность гравитационной антенны, обойдя одно из накладываемых квантовой механикой ограничений. Фундаментальные законы физики при этом нарушены не были, ученые использовали свет в так называемом сжатом состоянии. Подробности приводятся в статье Nature Photonics.

Физики смогли преодолеть ограничение, известное как стандартный квантовый предел, при определении положения зеркал внутри детектора гравитационных волн LIGO. Эта установка, построенная в США, представляет собой два перпендикулярных тоннеля длиной около четырех километров. В каждом из них проложена труба, из которой откачан воздух и по которой проходит лазерный луч. Лучи лазеров отражаются от расположенных в концах тоннелей зеркал, а затем снова сходятся вместе. За счет явления интерференции лучи либо усиливают, либо ослабляют друг друга, а величина эффекта зависит от пройденного лучами пути. Теоретически, такой прибор (интерферометр) должен зафиксировать изменение расстояний между зеркалами при проходе через установку гравитационной волны, но на практике точность интерферометра пока что слишком мала.

Работа LIGO с 2002 по 2010 год позволила физикам и инженерам выяснить то, каким образом можно существенно улучшить установку. Сейчас ее перестраивают с учетом новых предложений, поэтому международная группа ученых (включающая сотрудников физфака МГУ и Института прикладной физики в Нижнем Новгороде) провела эксперимент по повышению чувствительности одного из детекторов LIGO выше одного из квантовых барьеров и представила его результаты.

Ученым удалось преодолеть ограничение, известное как стандартный квантовый предел. Оно являлось следствием другого запрета (которые при этом нарушен не был), связанного с принципом неопределенности Гейзенберга. Принцип неопределенности гласит, что при одновременном измерении двух величин произведение ошибок их измерений не может быть меньше определенной константы. Примером таких одновременных измерений является определение координаты и импульса зеркала при помощи отраженного фотона.

Принцип неопределенности Гейзенберга указывает на то, что с ростом точности определения координаты резко падает точность определения скорости. При облучении зеркала множеством фотонов погрешности в измерении скорости приводят к тому, что становится сложнее определить его смещение и, как следствие, положение в пространстве (толку от множества точных измерений, которые противоречат друг другу, немного). Для обхода этого ограничения еще около четверти века назад было предложено использовать так называемые сжатые состояния света (их, в свою очередь, получили в 1985 году), однако реализовать идею на практике удалось только недавно.

Подготовлено по материалам: lenta.ru
Рейтинг:
Комментарии: (0)

Средняя оценка участников (от 1 до 10): Пока не оценено   
Проголосовавших: 0
Пока комментариев нет